Unique Binary Search Trees
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example, Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
Solution
public class Solution {
public int numTrees(int n) {
if (n == 1) return 1;
int[] arr = new int[n + 1];
arr[0] = 1;
arr[1] = 1;
arr[2] = 2;
for (int i = 3; i <= n; i++) {
for (int j = 1; j <= i; j++) {
arr[i] += arr[j - 1] * arr[i - j];
}
}
return arr[n];
}
}