Minimum Size Subarray Sum
Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
For example, given the array [2,3,1,2,4,3] and s = 7, the subarray [4,3] has the minimal length under the problem constraint.
click to show more practice.
More practice:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
Credits:Special thanks to @Freezen for adding this problem and creating all test cases.
Solution
public class Solution {
public int minSubArrayLen(int s, int[] nums) {
if (nums == null || nums.length == 0) return 0;
int left = 0;
int right = 0;
int sum = nums[0];
int result = Integer.MAX_VALUE;
boolean flag = false;
while (right < nums.length) {
if (sum >= s) {
if (right == left) {
return 1;
}
result = Math.min(right - left + 1, result);
flag = true;
sum -= nums[left];
left++;
} else {
right++;
if (right < nums.length) {
sum += nums[right];
}
}
}
if (flag) {
return result;
} else {
return 0;
}
}
}