Sliding Window Maximum
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example, Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.
Window position Max
[1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as [3,3,5,5,6,7].
Note: You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
Follow up: Could you solve it in linear time?
Solution
public class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
if (nums == null || nums.length == 0) return new int[0];
int size = nums.length;
int[] result = new int[size - k + 1];
PriorityQueue<Integer> pq = new PriorityQueue<>((a,b)->b-a);
for (int i = 0; i < k - 1; i++) {
pq.add(nums[i]);
}
for (int i = 0; i < result.length; i++) {
// add k+i
pq.add(nums[k + i-1]);
result[i] = pq.peek();
pq.remove(nums[i]);
}
return result;
}
}