Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix such that its sum is no larger than k.
Example: Given matrix = [ [1, 0, 1], [0, -2, 3] ] k = 2
The answer is 2. Because the sum of rectangle [[0, 1], [-2, 3]] is 2 and 2 is the max number no larger than k (k = 2).
Note:
The rectangle inside the matrix must have an area > 0. What if the number of rows is much larger than the number of columns?
Credits:Special thanks to @fujiaozhu for adding this problem and creating all test cases.
Solution
public class Solution {
public int maxSumSubmatrix(int[][] matrix, int k) {
if (matrix == null || matrix.length == 0) return Integer.MIN_VALUE;
int row = matrix.length;
int column = matrix[0].length;
int bestSum = -1;
int bestDiff = Integer.MAX_VALUE;
for (int i = 0; i < column; i++) {
for (int j = i; j < column; j++) {
int[] temp = new int[row];
for (int m = 0; m < row; m++) {
for (int n = i; n <= j; n++) {
temp[m] += matrix[m][n];
}
}
TreeSet<Integer> set = new TreeSet<>();
int currentValue = 0;
for (int p = 0; p < row; p++) {
currentValue += temp[p];
if (currentValue < k) {
if (bestDiff > k - currentValue) {
bestDiff = k - currentValue;
bestSum = currentValue;
}
} else if (currentValue == k) {
return currentValue;
}
try {
int candidate1 = set.ceiling(currentValue - k);
set.add(currentValue);
if (bestDiff > candidate1 + k - currentValue) {
bestSum = currentValue - candidate1;
bestDiff = candidate1 + k - currentValue;
}
} catch (Exception e) {
set.add(currentValue);
continue;
}
}
}
}
return bestSum;
}
}